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LETTER TO THE EDITOR 

Quantum transport in ballistic nano-scale Corbino disks 

George Kirczenow 
Department of Physics, Simon Fraser University, Bumaby, British Columbia VSA 156. 

.Canha 

Received 8 August 1994 

Abstract. A theoretical study is presented of rranSp017 through ballistic nano-scale Corbino disks 
with ideal contacts. Quantum. classical and semiclassical results are compared. At magnetic 
field B = 0 and low temperatures, the conduck" C is quantized in odd integer multiples 
of 2ealh. G is not a monotonic function of B,  because conduction via successive quantum 
states switches on and off as B increases. C shows an approximate plateau aI low B (for 
r, >(?I + r0)/2) and is zero at high B,  for r, < (ro - ri ) /2 .  re is the cyclotron radius. r, and 
r, are the radii of the inner and outer contacts. In beoveen, G falls approximately linearly with 
B ,  modulated by slmcnues on the scale of e 2 / h  due to conduction through individual quantum 
StateS. 

A Corbino disk is an annular region of conducting material (for example, a two-dimensional 
electron gas (ZDEG) in a semiconductor heterostructure) surrounding a metallic contact and 
surrounded in tum by a second metallic contact. This is illustrated in the inset of figure I, 
where the inner and outer metallic contacts are labelled I and 0. Macroscopic Corbino 
disks played an important role in the thought experiments [ 1,2] that first clarified the nature 
of the integer quantum Hall effect [3]. A unique feature of Corbino disks is that, unlike 
other two-dimensional semiconductor devices, their boundaries consist entirely of metallic 
contacts. Thus in a magnetic field they do not exhibit edge states of the usual type [Z]. 
The physics of the macroscopic Corbino disks considered theoretically to date has been 
strongly influenced by the presence of defects [1,2]. However, it is reasonable to expect 
that nano-scale Corhino disks will be ballistic, effectively defect-free systems, in common 
with other semiconductor nanosmctures [4]. Such nano-scale Corbino disks have not as 
yet been studied experimentally or theoretically, although Corbino disks a few microns in 
size have recently been fabricated [5]. 

In this letter, the first theoretical study of the transport properties of ballistic nano-scale 
Corbino disks with ideal contacts is presented. It is hoped that this work will stimulate 
interest in these novel systems and facilitate future experiments. It is predicted that in the 
absence of magnetic fields, ballistic Corbino disks should exhibit conductance quantization 
in odd integer multiples of 2ez/h. This is analogous to the conductance quantization 
observed in ballistic point contacts [4,6]. However, in point contacts, aLl integer multiples 
of 2e2/h are seen. Classically, the conductance of a ballistic Corbino disk, at fixed Fermi 
energy, remains constant as the magnetic field increases from zero, until the cyclotron radius 
r, becomes equal to (r. + ri)/2, the average of the radii of the inner and outer contacts ri 
and r, (see the inset of figure 1). As the magnetic field increases further, the conductance 
begins to decrease, reaching zero when r, = (ro - ri)/Z and electrons emitted from one 
contact can no longer reach the other. The results of quantum mechanical calculations follow 
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Figure 1. Conduclance G of a ballistic Corbino disk with ideal contacts versus Fermi energy 
EF at B = 0 and zero temperafure for q = O.lp, r. = 0 . 2 ~  and V ( r )  = 0. Solid line is the 
quantum conductance, dotted l i e  is the result of semi-classical approximation Inset: schematic 
of Corbino disk with inner and outer radii q and r,. Inner and outer metallic conmu are 
l&Ued I and 0 respectively. 

the classical behaviour, but with interesting differences: at low temperatures, the quantum 
conductance does not vary monotonically with magnetic field at fixed Fermi energy, but 
exhibits shncture due to the switching on and off of conduction through a succession of 
different quantum states as the magnetic field increases. 

An electron in a magnetic field obeys the Schrodinger equation 

(Z;;;;(rv+eA)2+ I f 2  .)w = EW 

where A is the vector potential, V is the electron's electrostatic potential energy and m* 
is its effective mass. For azimuthal symmetry and a uniform magnetic field B described 
by the vector potential A = ( - B y / 2 ,  B x / 2 , 0 ) ,  the eigenfunctions for an electron in two 
dimensions take the form 

and the Schrodinger equation reduces to 

where a = [ h / ( 2 ~ B e ) ] ' / ~  is the magnetic length, l? = 2m*E/fi2, = 2m*V/h2 and I is 
any integer. 

The above theory applies to non-interacting electrons in the annular 2DEG between the 
metallic contacts. In order to study electron transport through the Corbino disk however, 
it is also necessary to model the emission and absorption of electrons by the contacts 171. 
In this letter, a model of ideal contacts is adopted. The model is constructed so that each 
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mode, 1, of the Corbino disk flows freely into and out of the contacts and any electron that 
enters a contact is absorbed by it. This is achieved by treating each contact as if it were a 
two-dimensional system with an Z-dependent effective potential energy function U&) and 
defining 6 = 2m*U/A2. For the outer (inner) contact 0 (I) where r > r, (r e ri). Q(r )  is 
chosen so that 

where n stands for o (or i). With this choice [SI of U ,  the solutions gf(r) of the 
Schr9nger equation in the contact regions are of  the form gi(r) = A$eik=' + A;e-'*'' 

where k, = 6. That is, the solutions are linear combinations of incoming or outgoing 
radial waves. In the Landauer descnptlon of !nnsport 191, the two-terminal conductance G 
of the Corbino disk is then given by 

where ?j is the transmission probability of mode 1 through the Corbino disk from one contact 
to the other, and the sum is over the azimuthal modes 1 and values of spin index s at the 
Fermi energy. 7j defined in this way can be calculated by solving the differential equation 
(3) using standard numerical techniques. For example, for the mode 1 transmitted through 
the Corbino disk from the inner to the outer contact, one can choose the solution in the 
outer contact (for r z re) to be gl(r) = dkr. Then integrating equation (3) from r,, to ri, 
one obtains the transmission probability of mode I from contact to contact as 

Representative results for the conductance G of a ballistic Corbino disk calculated in 
the above way at B = 0 and zero temperature as a function of the Fermi energy E p  are 
presented in figure 1. The solid line is the calculated conductance for a disk with ri = O.lp, 
r, = 0.2/1, and a flat electrostatic potential V(r )  = 0. The electron effective mass is that of 
GaAs (m* = 0.067mo). The calculated conductance exhibits a series of plateaus neax odd 
integer multiples of 2e2/ h, qualitatively resembling the conductance plateaus observed in 
ballistic point contacts [4,6]. The accuracy of the quantization is a few percent of e2/h .  

One can understand the conductance quantization semi-classically as follows: in the 
absence of magnetic fields and for V(r) = 0, the radial part of the Scludinger equation (3) 
becomes 

This is a one-dimensional Schrodinger equation with an effective potential energy term 
(12 - l / 4 ) / r2 .  If electron propagation through the Corbino disk is treated classically, modes 
with 1 > 0 for which I? > (12 - 1/4)/r; pass over the highest point of the effective 
potential barrier (at r = ri) and are transmitted through the Corbino disk while other modes 
are reflected. In this simple picture the Landauer conductance formula (5) yields the semi- 
classical result 
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where I* is the largest integer that is smaller than (8a&m*rf/h2 + 1/4)1/2. The case 
near the onset of conduction by the lowest ( I  = 0) mode is slightly different. There the 
highest effective potential barrier is at r,, and conduction begins at .& = -1/(4r:). Gsc 
is shown as the dotted line in figure 1. This semi-classical conductance differs for the full 
quantum result mainly near the onset of conduction by each mode, where the last mode to 
be populated is only weakly transmitted in the quantum theory. 

The conductance of a ballistic Corbino disk with ri = 0 . 1 ~ .  r, = 0 . 2 ~  and V ( r )  = 0, 
calculated as described earlier at constant Fermi energy EF = 2 meV, is shown as a function 
of the magnetic field B by the solid curve in figure 2. The Zeeman splitting between spin 
up and spin down states is neglected because the magnetic field is rather low. 

0 0.25 0.5 0.75 
B Q 

Figure 2. Conductance G versus magnetic field B.  at constant Fermi energy EF = 2 meV. q, r, 
and V ( r )  as in f i p  1.  Solid line is the quantum conductance, dashed line is the Conductance 
for classical trajectories. Dotted line is the conductance in the semi-classical approximation. 
Inset: schematic of Corbino disk showing limiring classical electmu trajectories (see text). 

One can understand the broad trends in this plot in terms of a simple classical picture: 
suppose that each contact emits electrons isotropically with the Fermi velocity up, that 
the electrons follow classical trajectories, and that every electron that strikes a contact 
is absorbed. At zero magnetic field, every Fermi electron emitted by the inner contact 
is absorbed by the outer contact, and the Corbino disk has a conductance which will be 
denoted Go. As the magnetic field increases, all of the Fermi electrons emitted by the inner 
contact continue to be absorbed by the outer contact, and the conductance remains constant 
and equal to Go, until the cyclotron radius r, = m*uF/eB becomes equal to the average of 
the inner and outer radii of the Corbino disk, r, = (r. +ri)/2. At that magnetic field one of 
the electron trajectories leaving the inner contact at a grazing angle also just grazes the outer 
contact. This is the trajectory between A and C in the inset of figure 2. For larger magnetic 
fields the trajectories of some electrons emitted by the inner contact return ballistically to 
the inner contact and the conductance begins to decrease. In this regime, assuming the 
conductance to be proportional to the fraction of emitted electrons that cross from one 
contact to the other, simple geometrical considerations yield the classical conductance 
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where the inverse cosine takes values in the interval [0, a]. Gcbicd falls to zero (at zero 
temperature) when r, = (r,, - ri)/2, where the last trajectory that connects the inner and 
outer contacts is that denoted by B in the inset of figure 2. Gdwsia is shown by the dashed 
line in figure 2 where the semi-classical zero field conductance Gsc given by equation (8) 
has been used for Go. The good overall agreement between the classical and quantum 
results allows one to interpret the physical meaning of the gross features of the quantum 
conductance curve (the approximate plateau at low B (rc 2 (r, - ri)/2), and the vanishing 
of the conductance at higher B (for r, 5 (ro -ri)/2) within this simple classical framework. 

One can understand the quantum results better by extending the semi-classical picture 
described earlier for B = 0 to non-zero magnetic fields: for B # 0 (and V ( r )  = 0) the 
effective potential energy in the onedimensional Schrodinger equation (3) is 6'&) = 
(l2-1/4)/r2+r2/(4aZ)+l/a2. 6' is not a monotonic function of r ,  so that one must consider 
the possibility of an electron in mode 1 encountering an effective potential barrier when 
passing between the 2DEG and either ideal contact. Making once again the semi-classical 
approximation that modes that pass over the potential barrier are perfectly txansmitted, and 
others are reflected, the transmitted modes 1 at the Fermi energy EF are those that obey 
I.?F > 6'1(rz) for both x = i and x = 0. This leads to the condition that for a mode 1 to be 
txansmitted from contact to contact, 1 should satisfy 1; < 1 < 1: for both x = i and x = 0, 
where 

1," = &,/I.?pr," + 114 - r:/(2a2). (10) 

The semi-classical conductance of the Corbino disk given by the Landauer formula is then 

where the sum is over spin, 1+ is the largest integer smaller than both I,? and lof, and 
1- is the smallest integer larger than both 1; and 1;. Equation (11) applies if 1+ > I - ;  
otherwise Gsc(B) = 0. Gsc(B) is shown by the dotted line in figure 2, where the Zeeman 
splitting between spin up and down is neglected. G&3) changes with magnetic field in 
a step-wise fashion as both I +  and 1- decrease (but not simultaneously) as the magnetic 
field increases. Each step is due to conduction by a particular mode 1 switching on or off. 
The conductance obtained from the full quantum calculation (the solid curve in figure 2) 
follows this behaviour, but is somewhat lower than Gsc(B) and the conductance steps are 
more rounded because the modes that are close to being switched on or off are only partly 
transmitted. 

At low magnetic fields both I +  and 1- are controlled (except at 1 = 0) by the effective 
potential near the inner contact. From equation (10) it follows that l,? -1; = (4&r:+ l)'/' 
which is independent of B if the Fermi energy is held fixed. E +  and 1- which appear in 
equation ( 1 1 )  for &(E) may differ from l,? and 1; by at most unity. It then follows that, 
in this regime of low magnetic fields, Gsc(B) should have the form of a plateau modulated 
by excursions of magnitude 2e2/h, behaviour clearly visible in figure 2 for B e 0.25 T. 

As the magnetic field increases, eventually lof becomes smaller than 1:. This change 
occurs when 

If the Fermi energy is large so that I.?Fr: >> 1 and noting that r, = a'I.?;/*, equation (12) 
reduces to r, % (ro + ri)/2.. This is just where the low-B conductance plateau ends in the 
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classical approximation as discussed above. For larger values of E ,  I,' and 1; determine I +  
and 1- which appear in equation (11). From equation (10) one finds, 

1,' - I ;  = (r; - r:)/(ZQ*) + J-+ 4- (13) 

The first term on the RHS of equation (13) is negative and h e a r  in B and the other two 
terms are constant if EF is fixed. Thus in this regime if one ignores the difference between 
Io + - 1; and I +  - I - ,  one would find the semi-classical conductance Gsc(B) given by 
equation (11) decreasing linearly with increasing E .  This linear behaviour, modulated by 
steps due to the fact that I,' and I +  (and 2,: and I-) are not identical, is clearly visible in 
figure 2. Finally, again assuming that &r: >> 1 one finds that I,' - I ;  + 1 % 0 when 
r, = (ro - ri)/2, indicating that Gsc(B) should vanish not far from where the classical 
conductance vanishes, which is also seen in figure 2. 

In thii letter a theory of ballistic transport in Corbino disks with ideal contacts has been 
presented. Quantized conductances were predicted in the absence of magnetic fields, and 
interesting classical and quantum behaviour described when a magnetic field is present. It 
is hoped that this work will stimulate interest in and experimental studies of nano-scale 
Corbino disks, a new class of semiconductor nanostructwes. 

I would like to thank A S Sachrajda, B L Johnson and P Coleridge for interesting discussions. 
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Canada. 
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